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Personal Motivations

I am fascinated by:

simulation as a tool

building agents that learn

understanding multi-agent systems

understanding how communication affects ↑
My educational background:

Liberal Arts + ECE (undergraduate)

Public Policy + CS (graduate)
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Research Question

How do decentralized* communicating agents behave?

What behavior patterns emerge?

How do incentives affect behavior?

Do agents reach global optima?

What are the algorithmic challenges?
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Design Process

What kind of simulation can explore these questions?

Let’s walk through some design questions:

How does communication work?

How does learning (optimization) work?
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Communication Type

AgentAgent

AgentAgent

shared

Shared Communication

AgentAgent

AgentAgent

Private Communication
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Decentralized Learning
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Simulation Overview

You can think of the CASI simulation as a game:

There are na agents.

Each episode consists of T steps.

If an agent correctly guesses an unsolved goal attribute, it
gains points.

If an agent guesses all of its ng goal attributes, it gains many
points and wins.

Various actions are penalized (more on this later).

For example, asking a question has a small cost.
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Simulation Attributes

Each simulation has a configurable number of attributes.

Here is an example with three agents and six attributes:

100121

001goalgoal

10goalgoal1

goalgoal121

Attribute Vectors

agent 1

agent 2

agent 3

global

unknownknownkey
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Agent’s Perspective

Each agent sees an observation and must choose an action.

An observation consists of:

the agent’s internal state

interactions with other agents

(answers received, questions asked)

An action consists of:

intentions on how to respond to questions

choosing what to do next, one of:

(do nothing, guess an attribute, ask a question)
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Communication Protocol

agent i says to agent j :
“tell me about attribute a”

agent j chooses an intention
(i.e. to lie, ignore, or tell the truth)

the simulation converts the intention to an answer
and delivers it to agent i
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Agent Intentions

Intention Response
if unknown if known
i.e. None i.e. Some(v)

specific lie Value(r) Value(r) | r 6= v
general lie Known Unknown
ignore None None
incomplete truth Unknown Known
complete truth Unknown Value(v)

where r is a random value
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Incentives

let incentives = Incentives { // Experiment #1

cost_ask_question: 2.0,

cost_ask_self_question: 20.0,

cost_excessive_guessing: 20.0,

cost_incorrect_guess: 20.0,

cost_known_guess: 20.0,

cost_non_goal_guess: 20.0,

cost_solved_guess: 20.0,

cost_unnecessary_reply: 20.0,

max_guesses_per_attr: 1,

reward_correct: 100.0,

reward_win: 200.0,

};
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CASI Architecture

Agent

Agent

Agent

Simulator

gRP
C

gRPC

gRPC

Simulator (written in Rust)

Learning Agents (written with PyTorch)

Interprocess communication (uses gRPC)
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Why Rust?

Rust helps me write (and refactor) fast and correct software,
quickly.

Performance: no runtime, no garbage collector

Reliability: expressive type system gives memory-safety,
thread-safety

Productivity: package manager, libraries, community
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Why PyTorch?

As you might expect, PyTorch:

manages a computation graph and auto-differentiation

includes reusable modules for neural networks

has CPU and GPU support

In comparison to TensorFlow, I find PyTorch is:

more natural (has a more intuitive API)

easier to debug
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Why gRPC?

Simple service definition:

easy refactoring

Works across languages and platforms:

conveniently bridges Rust and Python

public and private use cases (RPC, APIs)

Start quickly and scale:

works on one machine

viable for large multi-agent systems
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Neural Network gRPC Definition

Here is how I use gRPC to define a neural network model for a
learning agent:

// Neural network for action prefs and value function

service Net {

rpc Init (NetCfg) returns (Empty) {}

rpc InitHidden (Empty) returns (Empty) {}

rpc Predict (Observations) returns (Predictions) {}

rpc ResetOptimizer (OptimCfg) returns (Empty) {}

rpc Train (Sequences) returns (Loss) {}

rpc GetParams (Empty) returns (Params) {}

rpc SetParams (Params) returns (Empty) {}

}

This file will generate executable code in a wide variety of
languages.
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Reinforcement Learning

Reinforcement learning (RL) is learning what to do —
how to map situations to actions — so as to maximize a
numerical reward signal. - Sutton & Barto

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.

4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.
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Decentralized RL

You may remember this diagram from before:

Agent
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observation action
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decentralized learning

Can you think about some pros and cons?
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RL Dimensions

Environmental considerations:

states: fully-observed vs. partially-observed

actions: discrete vs. continuous

Algorithmic considerations:

policies: deterministic vs. stochastic

on-policy vs. off-policy

model-based vs. model-free *
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‘Models’ in RL

I briefly wanted to mention what ‘model’ means in the context of
RL, since it can be confusing.

Ben Recht says it well in “A Tour of Reinforcement Learning: The
View from Continuous Control” (2018):

The term “model-free” almost always means “no model
of the state transition function” when casually claimed in
reinforcement learning research. However, this does not
mean that modeling is not heavily built into the
assumptions of model-free RL algorithms.
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Algorithm Experimentation

I’ve implemented these algorithms from scratch in Rust and
PyTorch:

REINFORCE (’vanilla’)

REINFORCE with baseline

Proximal Policy Optimization (PPO)

Advantage Actor Critic (A2C)

I’m currently using A2C + PPO with exploration bonuses.
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REINFORCE

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s,✓)
Algorithm parameter: step size ↵ > 0

Initialize policy parameter ✓ 2 Rd0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·,✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G PT
k=t+1 �

k�t�1Rk (Gt)
✓  ✓ + ↵�tGr ln⇡(At|St,✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (�=1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

“Reinforcement Learning: An Introduction” by Sutton & Barto, 2018
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PPO Actor-Critic

finite-horizon estimators in [Mni+16]. If using a neural network architecture that shares parameters
between the policy and value function, we must use a loss function that combines the policy
surrogate and a value function error term. This objective can further be augmented by adding
an entropy bonus to ensure su�cient exploration, as suggested in past work [Wil92; Mni+16].
Combining these terms, we obtain the following objective, which is (approximately) maximized
each iteration:

LCLIP+V F+S
t (�) = Êt

⇥
LCLIP

t (�)� c1L
V F
t (�) + c2S[�✓](st)

⇤
, (9)

where c1, c2 are coe�cients, and S denotes an entropy bonus, and LV F
t is a squared-error loss

(V✓(st)� V targ
t )2.

One style of policy gradient implementation, popularized in [Mni+16] and well-suited for use
with recurrent neural networks, runs the policy for T timesteps (where T is much less than the
episode length), and uses the collected samples for an update. This style requires an advantage
estimator that does not look beyond timestep T . The estimator used by [Mni+16] is

Ât = �V (st) + rt + �rt+1 + · · · + �T�t+1rT�1 + �T�tV (sT ) (10)

where t specifies the time index in [0, T ], within a given length-T trajectory segment. Generalizing
this choice, we can use a truncated version of generalized advantage estimation, which reduces to
Equation (10) when � = 1:

Ât = �t + (��)�t+1 + · · · + · · · + (��)T�t+1�T�1, (11)

where �t = rt + �V (st+1)� V (st) (12)

A proximal policy optimization (PPO) algorithm that uses fixed-length trajectory segments is
shown below. Each iteration, each of N (parallel) actors collect T timesteps of data. Then we
construct the surrogate loss on these NT timesteps of data, and optimize it with minibatch SGD
(or usually for better performance, Adam [KB14]), for K epochs.

Algorithm 1 PPO, Actor-Critic Style

for iteration=1, 2, . . . do
for actor=1, 2, . . . , N do

Run policy �✓old in environment for T timesteps

Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt �, with K epochs and minibatch size M � NT
�old � �

end for

6 Experiments

6.1 Comparison of Surrogate Objectives

First, we compare several di�erent surrogate objectives under di�erent hyperparameters. Here, we
compare the surrogate objective LCLIP to several natural variations and ablated versions.

No clipping or penalty: Lt(�) = rt(�)Ât

Clipping: Lt(�) = min(rt(�)Ât, clip(rt(�)), 1� �, 1 + �)Ât

KL penalty (fixed or adaptive) Lt(�) = rt(�)Ât � � KL[�✓old ,�✓]

5

“Proximal Policy Optimization Algorithms” by Schulman et al. 2017
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Exploration

There are many kinds of exploration in RL:

ε-greedy exploration *

a result of stochastic policies

entropy-based exploration

seeking novel (state, action) pairs
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Count-Based Exploration with Hashing

From #Exploration by Tang et. al, 2017:

a simple generalization of the classic count-based
approach [. . .]. States are mapped to hash codes, which
allows to count their occurrences with a hash table.
These counts are then used to compute a reward bonus
according to the classic count-based exploration theory.
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Locality Sensitive Hashing (LSH)

From Wikipedia:

LSH hashes input items so that similar items map to the
same ‘buckets’ with high probability [. . .]. LSH differs
from conventional and cryptographic hash functions
because it aims to maximize the probability of a
‘collision’ for similar items.

Arguably, the key criteria for choosing an LSH algorithm is the
relevant distance metric.
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LSH for Hamming Distance

Early LSH papers on Hamming distances suggest using
single-column sampling techniques.

Each output bit is created simply by sampling a single column
from the input vector.

However, sampling only a fraction of the input vector seems
suboptimal. I would expect benefits from drawing information
from all columns.
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Hamming Distance LSH with Super-Bits

I blended two approaches from the literature as follows:

Sample from each column but only once. Otherwise,
differences can be accentuated.

Designate groups of the output bits. This allows trading-off
between the number of ’anchor’ points for the distance
calculation vs. the amount of compression. (Inspired by
Super-Bit LSH by Jie et al., 2012.)

Combine columns using the Hamming distance. Store the
result in each super-bit group.

David James Communicating Agents Seeking Information



Motivation Simulation Algorithms Experiments Lessons Learned Next Steps

Table of Contents

1 Motivation

2 Simulation

3 Algorithms

4 Experiments

5 Lessons Learned

6 Next Steps

David James Communicating Agents Seeking Information



Motivation Simulation Algorithms Experiments Lessons Learned Next Steps

Attributes

Here is an example of a Rust data structure to configure attributes
for an experiment.

/// Attribute configuration

pub struct AttrCfg {

/// Total number of attributes in simulation

pub count: u16,

/// Attributes known from direct experience (per agent)

pub direct: u16,

/// To win, an agent must solve this many attributes

pub goal: u16,

/// Number of possible values for each attribute

pub values: u8,

}
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Experiment 0 Description

Two Agents:

One non-learning random agent

One learning agent

a feedforward neural network

Question: Can this agent learn to win?

Answer: Perhaps surprisingly, it can, by
exploiting the lack of random initialization.

You might call it ‘Groundhog Day’ learning.
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Experiment 0 Output 1
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Experiment 0 Output 2
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Experiment 0 Output 3
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Experiment 1 Description

Same as Experiment 0 but with random experiment initialization:

Two Agents:

One non-learning random agent

One learning agent

a feedforward neural network

Question: How can this agent learn to win?

Answer: It can’t; communication would be required.
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Experiment 2 Description

Two Agents:

One non-learning completely honest agent

One learning agent, with both:

a feedforward neural network

an LSTM

Question: How can this agent learn to win?

Answer: By asking questions of the honest agent.

Discuss: Is the LSTM necessary in this case?
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Problem: Diverse Purposes for Runs

Since the simulation engine is a platform for experimentation, it
has different purposes:

Verifying new algorithms

Inspecting policy changes over time

Exploring hyperparameters

Monitoring optimizer performance

Getting the verbosity level is tricky: too little misses out, but too
much creates clutter...
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Solution: Granular Logging

One solution is to use fine-grained logging:

let log_cfg = LogCfg { // subset

log_action_probs: false,

log_actions_rewards: false,

log_attrs: false,

log_encodings: false,

log_experiment_start: true,

log_interactions: false,

log_iteration_csv: true,

log_learning: false,

log_obs_summary: true,

log_trajectories: false,

};
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Problem: When to Stop Optimization?

Policy gradient (PG) methods aim to improve a policy over many
iterations.

However, the policy performance does not necessarily
monotonically improve.

Empirically, PG methods, even with improvements such as PPO,
can sometimes drift away from good performance and never
recover.

See: “Where Did My Optimum Go?: An Empirical Analysis of
Gradient Descent Optimization in Policy Gradient Methods” by
Henderson et al. 2018.
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Why do Policy Gradient Methods Degrade?

The Policy Gradient Theorem gives the correct gradient, so what
could go wrong in practice?

Gradient ascent takes many iterations. How many? What
does research say about the bounds as applied to PG?

The underlying function approximator* may lack sufficient
representational power.

The network parameters may not be able to efficiently
respond to the latest distributional shift.
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Solution: Backtracking Algorithm

I implemented a three-level backtracking algorithm that requires
three hyper-parameters:

/// Backtracking configuration

pub struct BacktrackCfg {

/// Snapshot pops before stopping early

pub pop_limit: u32,

/// Consecutive resets before snapshot pop

pub restart_limit: u32,

/// Consecutive unimproved iterations before reset

pub unimproved_limit: u32,

}

The algorithm is shown on the next slide.
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Backtracking Algorithm

Algorithm 1: Three-level backtracking algorithm

snapshots ← []; pops ← 0; restarts ← 0; unimproved ← 0
for iteration ← 0 to max iterations do

if improved performance then
snapshots.push(model); restarts ← 0; unimproved ← 0

else unimproved ← unimproved + 1
if unimproved > max unimproved then

restarts ← restarts + 1; unimproved ← 0
if restarts > max restarts then

pops ← pops + 1
if pops > max pops then stop early()
else snapshots.pop(); restarts ← 0
model ← snapshots.last()

else
model.optimization step()
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Problem: Consistency of Responses

An agent reports an intention to the simulation; the simulation
converts it to a response that another agent observes.

source: http://factmyth.com

Claim: inconsistent lies are easier to discover.

How can the simulation achieve consistent lying?
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Consistent Lying

/// Return a deterministic lie that depends only on:

/// 1. the function arguments

/// 2. the agent's private salt

/// Note: 'q' / 'a' = agent id of questioner / answerer

fn specific_lie(

&self, q: AgentId, attr_idx: u16, attr_val: Option<u8>

) -> Answer {

let m = self.attr_cfg.values as u64;

let hash = self.calc_hash(q, attr_idx);

let lie = match attr_val {

Some(true_val) =>

(true_val as u64 + (hash % (m - 1))) % m,

None => hash % m

};

Answer::Value(lie as u8)

}
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Next Steps

LSTM architecture & parameter tuning

Create experiments with multiple learning agents

Improve visualizations

Try various multi-agent reward structures

Use unsupervised learning to find patterns in policies

Improve efficiency by using parallelism in Rust
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Discussion

I look forward to your questions and comments.
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