Communicating Agents Seeking Information

David James

2019-01-28

David James Communicating Agents Seeking Information

@ Motivation

© Simulation

© Algorithms

@ Experiments
© Lessons Learned

@ Next Steps

David James Communicating Agents Seeking Information

Motivation
©00000

Table of Contents

© Motivation

David James Communicating Agents Seeking Information

Motivation
000000

Personal Motivations

| am fascinated by:

@ simulation as a tool

@ building agents that learn

@ understanding multi-agent systems

@ understanding how communication affects 1
My educational background:

@ Liberal Arts + ECE (undergraduate)

@ Public Policy + CS (graduate)

David James Communicating Agents Seeking Information

Motivation
00000

Research Question

How do decentralized* communicating agents behave?
@ What behavior patterns emerge?
@ How do incentives affect behavior?
@ Do agents reach global optima?

@ What are the algorithmic challenges?

David James Communicating Agents Seeking Information

Motivation
00000

Design Process

What kind of simulation can explore these questions?
Let's walk through some design questions:
@ How does communication work?

@ How does learning (optimization) work?

David James Communicating Agents Seeking Information

Motivation
000000

Communication Type

-_—-

7 \
(
N shared ,

-__-

[Agent J \. Agent]

Shared Communication Private Communication

David James Communicating Agents Seeking Information

Motivation
00000e

Learning Type

—_————- ~
observation L Jro— : action
gen]
Sy
= | : =
= | &
% observation | | action S
5 >| Agent ; g
E W E
(7] | : @
|
observation L : action
1 Agent]

— \ ;J | —
centralized learning
Centralized Learning

David

—_———— ~
M o |) M
observation Agent | action
gen 1
el
= rm--== ~ =
= . | .
% observation ! [| \ action g
= f | =
£ [E
2] 7]
. | .
observation L | action
Agent]
_) | _

decentralized learning

Decentralized Learning

Communicating Agents Seeking Information

Simulation
900000000000

Table of Contents

© Simulation

David James Communicating Agents Seeking Information

Simulation
00000000000

Simulation Overview

You can think of the CASI simulation as a game:

There are n, agents.

Each episode consists of T steps.

If an agent correctly guesses an unsolved goal attribute, it
gains points.

If an agent guesses all of its ngy goal attributes, it gains many
points and wins.

@ Various actions are penalized (more on this later).

For example, asking a question has a small cost.

David James Communicating Agents Seeking Information

Simulation
[e]e] le]elelelelelele]e)

Simulation Attributes

Each simulation has a configurable number of attributes.
Here is an example with three agents and six attributes:

Attribute Vectors

global 1 | 2 | 1 | 0 | 0 | 1 |
agent 1 | goal | goal | 1 | 0 | 0 | |
agent 2 | 1 | | goal | goal | 0 | 1 |
agent 3 | 1 | 2 | 1 | | goal | goal |

key D known |:| unknown
David James Communicating Agents Seeking Information

Simulation
[e]e]e] lelelelelelele]e)

Agent’s Perspective

Each agent sees an observation and must choose an action.
An observation consists of:

o the agent's internal state

@ interactions with other agents

o (answers received, questions asked)

An action consists of:

@ intentions on how to respond to questions

@ choosing what to do next, one of:

o (do nothing, guess an attribute, ask a question)

David James Communicating Agents Seeking Information

Simulation
[ee]ele] Telelelelele]e)

Communication Protocol

@ agent / says to agent J:
“tell me about attribute a"

@ agent j chooses an intention
(i.e. to lie, ignore, or tell the truth)

@ the simulation converts the intention to an answer
and delivers it to agent i

David James Communicating Agents Seeking Information

Simulation
[ee]ele]e] lelelelelele)

Agent Intentions

Intention Response

if unknown | if known

i.e. None |i.e. Some(v)
specific lie Value(r) Value(r) | r # v
general lie Known Unknown
ignore None None
incomplete truth | Unknown Known
complete truth Unknown | Value(v)

where r is a random value

David James Communicating Agents Seeking Information

Simulation
000000800000

Incentives

let incentives = Incentives { // Ezperiment #1
cost_ask_question: 2.0,
cost_ask_self_question: 20.0,
cost_excessive_guessing: 20.0,
cost_incorrect_guess: 20.0,
cost_known_guess: 20.0,
cost_non_goal_guess: 20.0,
cost_solved_guess: 20.0,
cost_unnecessary_reply: 20.0,
max_guesses_per_attr: 1,
reward_correct: 100.0,
reward_win: 200.0,

David James Communicating Agents Seeking Information

Simulation
0O000000e0000

CASI Architecture

Simulator

e Simulator (written in Rust)
e Learning Agents (written with PyTorch)

@ Interprocess communication (uses gRPC)

David James Communicating Agents Seeking Information

Simulation
00000000 e000

Why Rust?

Rust helps me write (and refactor) fast and correct software,
quickly.

@ Performance: no runtime, no garbage collector

@ Reliability. expressive type system gives memory-safety,
thread-safety

@ Productivity: package manager, libraries, community

David James Communicating Agents Seeking Information

Simulation
000000000800

Why PyTorch?

As you might expect, PyTorch:
@ manages a computation graph and auto-differentiation
@ includes reusable modules for neural networks
@ has CPU and GPU support
In comparison to TensorFlow, | find PyTorch is:
@ more natural (has a more intuitive API)

@ easier to debug

David James Communicating Agents Seeking Information

Simulation
000000000080

Why gRPC?

‘GRPC»

Simple service definition:

@ easy refactoring
Works across languages and platforms:

@ conveniently bridges Rust and Python

@ public and private use cases (RPC, APls)
Start quickly and scale:

@ works on one machine

@ viable for large multi-agent systems

David James Communicating Agents Seeking Information

Simulation
00000000000 e

Neural Network gRPC Definition

Here is how | use gRPC to define a neural network model for a
learning agent:

// Neural network for action prefs and value function
service Net {
rpc Init (NetCfg) returns (Empty) {}
rpc InitHidden (Empty) returns (Empty) {}
rpc Predict (Observations) returns (Predictiomns) {3}
rpc ResetOptimizer (OptimCfg) returns (Empty) {3}
rpc Train (Sequences) returns (Loss) {}
rpc GetParams (Empty) returns (Params) {}
rpc SetParams (Params) returns (Empty) {}
3

This file will generate executable code in a wide variety of
languages.

David James Communicating Agents Seeking Information

Algorithms
©000000000000

Table of Contents

© Algorithms

David James Communicating Agents Seeking Information

Algorithms
0®00000000000

Reinforcement Learning

Reinforcement learning (RL) is learning what to do —
how to map situations to actions — so as to maximize a
numerical reward signal. - Sutton & Barto

:| Agent
—
state reward action

St R, At
L R1+1 (

;S,H Environment]4—

David James Communicating Agents Seeking Information

Algorithms
00®0000000000

Decentralized RL

You may remember this diagram from before:

rm--=- ~
) . V) ! .)
observation . | action
> Agent 1 >
! ~—— |
‘ ————— -
= r-——=-—-- ~ £
= . ——\ | .
S | observation ! , action S
% > Agent \ > ®©
3
E — E
o [00 Ce=——- - 17
r-—=-=-- \l
. SR .
observation L | action
>| Agent \ >
— " — —

decentralized learning

Can you think about some pros and cons?

David James Communicating Agents Seeking Information

Algorithms
0008000000000

RL Dimensions

Environmental considerations:
@ states: fully-observed vs. partially-observed
@ actions: discrete vs. continuous
Algorithmic considerations:
@ policies: deterministic vs. stochastic
@ on-policy vs. off-policy

@ model-based vs. model-free *

David James Communicating Agents Seeking Information

Algorithms
0000®00000000

‘Models’ in RL

| briefly wanted to mention what ‘model’ means in the context of
RL, since it can be confusing.

Ben Recht says it well in “A Tour of Reinforcement Learning: The
View from Continuous Control” (2018):

The term “model-free” almost always means “no model
of the state transition function” when casually claimed in
reinforcement learning research. However, this does not
mean that modeling is not heavily built into the
assumptions of model-free RL algorithms.

David James Communicating Agents Seeking Information

Algorithms
0000080000000

Algorithm Experimentation

I've implemented these algorithms from scratch in Rust and
PyTorch:

e REINFORCE ('vanilla’)

o REINFORCE with baseline

@ Proximal Policy Optimization (PPO)
@ Advantage Actor Critic (A2C)

I'm currently using A2C + PPO with exploration bonuses.

David James Communicating Agents Seeking Information

Algorithms
000000@000000

REINFORCE

REINFORCE: Monte-Carlo Policy-Gradi

Input: a differentiable policy parameterization (als, 8)
Algorithm parameter: step size a > 0
Initialize policy parameter 6 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R, ..., S7—1, Ar_1, Ry, following 7(:|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ Zlé:H»l YRy, (Gy)
0+ 0+ ay'GVinm(AS,0)

“Reinforcement Learning: An Introduction” by Sutton & Barto, 2018

David James Communicating Agents Seeking Information

Algorithms
0000000800000

PPO Actor-Critic

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run policy 7y, in environment for T' timesteps

old

Compute advantage estimates Al, LA
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT'
Oola < 0
end for

“Proximal Policy Optimization Algorithms” by Schulman et al. 2017

David James Communicating Agents Seeking Information

Algorithms
0000000080000

Exploration

There are many kinds of exploration in RL:

@ e-greedy exploration *

a result of stochastic policies

entropy-based exploration

seeking novel (state, action) pairs

David James Communicating Agents Seeking Information

Algorithms
0000000008000

Count-Based Exploration with Hashing

From #Exploration by Tang et. al, 2017:

a simple generalization of the classic count-based
approach [...]. States are mapped to hash codes, which
allows to count their occurrences with a hash table.
These counts are then used to compute a reward bonus
according to the classic count-based exploration theory.

David James Communicating Agents Seeking Information

Algorithms
0000000000800

Locality Sensitive Hashing (LSH)

From Wikipedia:

LSH hashes input items so that similar items map to the
same ‘buckets’ with high probability [...]. LSH differs
from conventional and cryptographic hash functions
because it aims to maximize the probability of a
‘collision’ for similar items.

Arguably, the key criteria for choosing an LSH algorithm is the
relevant distance metric.

David James Communicating Agents Seeking Information

Algorithms
0000000000080

LSH for Hamming Distance

Early LSH papers on Hamming distances suggest using
single-column sampling techniques.

@ Each output bit is created simply by sampling a single column
from the input vector.

@ However, sampling only a fraction of the input vector seems
suboptimal. | would expect benefits from drawing information
from all columns.

David James Communicating Agents Seeking Information

Algorithms
000000000000

Hamming Distance LSH with Super-Bits

| blended two approaches from the literature as follows:

@ Sample from each column but only once. Otherwise,
differences can be accentuated.

@ Designate groups of the output bits. This allows trading-off
between the number of 'anchor’ points for the distance
calculation vs. the amount of compression. (Inspired by
Super-Bit LSH by Jie et al., 2012.)

@ Combine columns using the Hamming distance. Store the
result in each super-bit group.

David James Communicating Agents Seeking Information

Experiments
©0000000

Table of Contents

@ Experiments

David James Communicating Agents Seeking Information

Experiments
0®000000

Attributes

Here is an example of a Rust data structure to configure attributes
for an experiment.

/// Attribute configuration

pub struct AttrCfg {
/// Total number of attributes in simulation
pub count: ul6,

/// Attributes known from direct experience (per agent)
pub direct: ulé6,

/// To win, an agent must solve this many attributes
pub goal: ul6,

/// Number of posstible values for each attribute
pub values: u8,

David James Communicating Agents Seeking Information

Experiments
00@00000

Experiment 0 Description

Two Agents:
@ One non-learning random agent
@ One learning agent
e a feedforward neural network

Question: Can this agent learn to win?

Answer: Perhaps surprisingly, it can, by
exploiting the lack of random initialization.

You might call it ‘Groundhog Day’ learning.

David James Communicating Agents Seeking Information

Experiments
[e]e]e] Yolelele]

Experiment 0 Output 1

Running experiment el
iteration, ret_mean, ret_std, ret_max, ret_min, loss_mean

20] | i | i | 011.000.000|1000000.1000000:
14 | i | i | e e | 011.000.001|1000000.1000000:

70 | i | s | 011.000.010|1000000.1000000:

43 | i | i | e e | 011.000.011|1000000.1000000:

31 | i | i | e e | 011.000.100|1000000.1000000:

15 | i | i | e e | 011.000.101|1000000.1000000:

16 | i | i | e | 011.000.110|1000000.1000000:
45 | i | i | e e | 011.000.111|1000000.1000000:
71 | i | i | e e | 011.001.000|1000000.1000000:

10 011.001.010 |1000000.1000000:

9 011.001.110|1000000.1000000:

77 011.010.000 |1000000.1000000:

26 011.010.001 |1000000.1000000:

14 011.010.101 |1000000.1000000:
121 011.011.000 |1000000.1000000:
17 011.011.100 |1000000.1000000:

[best return= -337.672]
0, -337.672, 126.714, 3.619, -474.629, 1742.59

I

David James Communicating Agents Seeking Information

Experiments
0000@000

Experiment 0 Output 2

| 011.000.011|1000000.1000000: 000.
| 011.000.101|1000000.1000000: 000.
| 011.000.110|1000000.1000000: 000.
| 011.000.111|1000000.1000000: 000.
| 011.001.010|1000000.1000000: 000.
| 011.001.100 |1000000.1000000: 000.
n| 011.001.110|1000000.1000000:000.
_mm| 011.010.000|1000000.1000000: 000.
=n| 011.010.001|1000000.1000000: 000.
-n| 011.010.100|1000000.1000000: 000.
_am| 011.010.101|1000000.1000000: 000.
-m| 011.011.000|1000000.1000000: 000.
-m| 011.011.100|1000000.1000000: 000.

64.967]
64.967, 90.441, 217.781, -133.422, 197.47

Communicating Agents Seeking Information

Experiments
00000000

Experiment 0 Output 3

30| B | B | | 011.000.111|1000000.1000000:000.000 162.8091
30 | B | B |] | 011.010.101|1000000.1000000:000.000 98.6273
720 | B | B N | 011.011.100|1000000.1000000:000.000 15.7926
[perfect return= 370.000]

[three perfect returns]

[stop early] best_return: 370.000 at iteration 120 (after 123 iterations)

Communicating Agents Seeking Information

Experiments
000000@0

Experiment 1 Description

Same as Experiment 0 but with random experiment initialization:
Two Agents:

@ One non-learning random agent

@ One learning agent

e a feedforward neural network
Question: How can this agent learn to win?

Answer: It can't; communication would be required.

David James Communicating Agents Seeking Information

Experiments
0000000e

Experiment 2 Description

Two Agents:

@ One non-learning completely honest agent
@ One learning agent, with both:
o a feedforward neural network
e an LSTM
Question: How can this agent learn to win?

Answer: By asking questions of the honest agent.

Discuss: Is the LSTM necessary in this case?

David James Communicating Agents Seeking Information

Lessons Learned
©00000000

Table of Contents

© Lessons Learned

David James Communicating Agents Seeking Information

Lessons Learned
0@0000000

Problem: Diverse Purposes for Runs

Since the simulation engine is a platform for experimentation, it
has different purposes:

@ Verifying new algorithms

@ Inspecting policy changes over time
@ Exploring hyperparameters

@ Monitoring optimizer performance

Getting the verbosity level is tricky: too little misses out, but too
much creates clutter...

David James Communicating Agents Seeking Information

Lessons Learned
00®000000

Solution: Granular Logging

One solution is to use fine-grained logging:

let log_cfg = LogCfg { // subset
log_action_probs: false,
log_actions_rewards: false,
log_attrs: false,
log_encodings: false,
log_experiment_start: true,
log_interactions: false,
log_iteration_csv: true,
log_learning: false,
log_obs_summary: true,
log_trajectories: false,

};

David James Communicating Agents Seeking Information

Lessons Learned
000@00000

Problem: When to Stop Optimization?

Policy gradient (PG) methods aim to improve a policy over many
iterations.

However, the policy performance does not necessarily
monotonically improve.

Empirically, PG methods, even with improvements such as PPO,
can sometimes drift away from good performance and never
recover.

See: “"Where Did My Optimum Go?: An Empirical Analysis of
Gradient Descent Optimization in Policy Gradient Methods" by
Henderson et al. 2018.

David James Communicating Agents Seeking Information

Lessons Learned
0000®0000

Why do Policy Gradient Methods Degrade?

The Policy Gradient Theorem gives the correct gradient, so what
could go wrong in practice?

@ Gradient ascent takes many iterations. How many? What
does research say about the bounds as applied to PG?

@ The underlying function approximator* may lack sufficient
representational power.

@ The network parameters may not be able to efficiently
respond to the latest distributional shift.

David James Communicating Agents Seeking Information

Lessons Learned
00000@000

Solution: Backtracking Algorithm

| implemented a three-level backtracking algorithm that requires
three hyper-parameters:

/// Backtracking configuration

pub struct BacktrackCfg {
/// Snapshot pops before stopping early
pub pop_limit: u32,

/// Consecutive resets before snapshot pop
pub restart_limit: u32,

/// Consecutive unimproved iterations before reset
pub unimproved_limit: u32,

}

The algorithm is shown on the next slide.

David James Communicating Agents Seeking Information

Lessons Learned
000000800

Backtracking Algorithm

Algorithm 1: Three-level backtracking algorithm

snapshots < [|; pops < 0; restarts < 0; unimproved + 0
for iteration < 0 to max_iterations do
if improved_performance then
‘ snapshots.push(model); restarts <— 0; unimproved <+ 0
else unimproved < unimproved + 1
if unimproved > max_unimproved then
restarts < restarts + 1; unimproved < 0
if restarts > max_restarts then
pops < pops + 1
if pops > max_pops then stop_early()
else snapshots.pop(); restarts « 0
model < snapshots.last()

else
| model.optimization_step()

David James Communicating Agents Seeking Information

Lessons Learned
000000080

Problem: Consistency of Responses

An agent reports an intention to the simulation; the simulation
converts it to a response that another agent observes.

"ngau tell truth

| you don't Rave to
remember angtﬁing“
= M)agée 0Nark Twain

source: http://factmyth.com
Claim: inconsistent lies are easier to discover.

How can the simulation achieve consistent lying?

David James Communicating Agents Seeking Information

Lessons Learned
00000000e

Consistent Lying

/// Return a deterministic lie that depends only on:
/// 1. the function arguments
/// 2. the agent's private salt
/// Note: 'q' / 'a' = agent td of questioner / answerer
fn specific_lie(
&self, q: AgentId, attr_idx: ul6, attr_val: Option<u8>
) —> Answer {
let m = self.attr_cfg.values as u64;
let hash = self.calc_hash(q, attr_idx);
let lie = match attr_val {
Some (true_val) =>
(true_val as u64 + (hash % (m - 1))) % m,
None => hash 7 m
3
Answer::Value(lie as u8)

¥

David James Communicating Agents Seeking Information

Next Steps
©00

Table of Contents

@ Next Steps

David James Communicating Agents Seeking Information

Next Steps
o] To)

Next Steps

LSTM architecture & parameter tuning

Create experiments with multiple learning agents

Improve visualizations

@ Try various multi-agent reward structures

Use unsupervised learning to find patterns in policies

Improve efficiency by using parallelism in Rust

David James Communicating Agents Seeking Information

Next Steps
ooe

Discussion

| look forward to your questions and comments.

David James Communicating Agents Seeking Information

	Motivation
	Simulation
	Algorithms
	Experiments
	Lessons Learned
	Next Steps

